

Use of Atmospheric Plasma Technology in Manufacturing and Application of Adhesive Tapes

tesa SE

Dr. Klaus Keite-Telgenbüscher

Dr. Marcel Hähnel

Arne Koops

Hermann Neuhaus-Steinmetz

Afera Technical Seminar, Brussels, 13. – 15. 04. 2015

Agenda

- Introduction
 - Motivation
- Plasma fundamentals
- Technology overview
 - Atmospheric plasma technologies (focus tesa)
- Examples
 - Applications at tesa
 - Aspects of surface analysis
 - Plasma enhanced deposition
- Plasma activation in customer applications
 - Plasma activation
 - Example from automotive industry
- Wrap-up

Company Profile

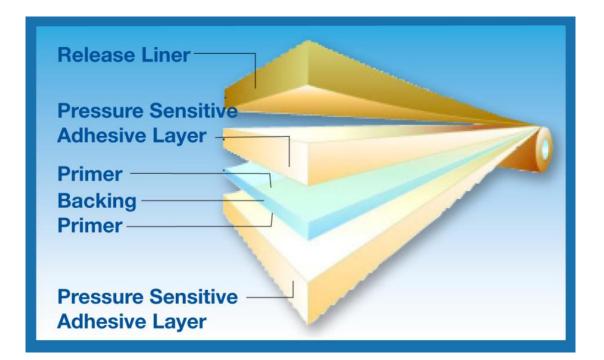
tesa SE:

One of the world's leading producers of selfadhesive solutions for industry, trades, and consumers

125 years of experience in

- Coating technology
- Development of adhesive masses and innovative product solutions

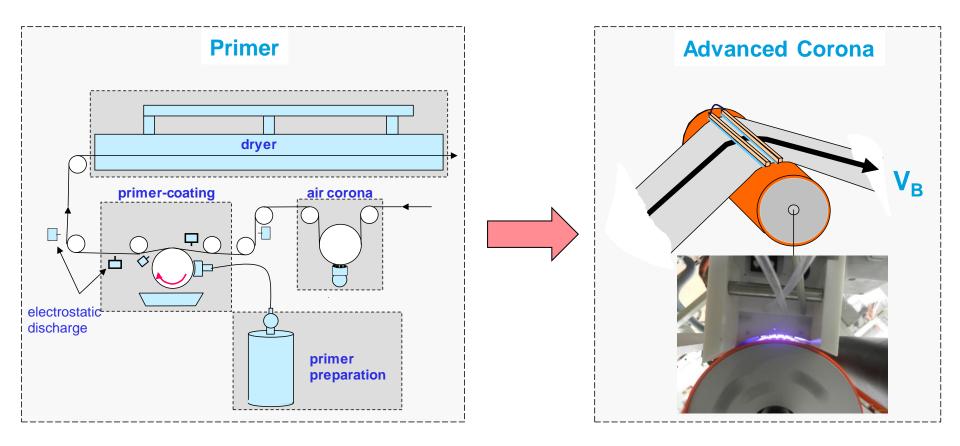
tesa is the **global market leader** in many application fields



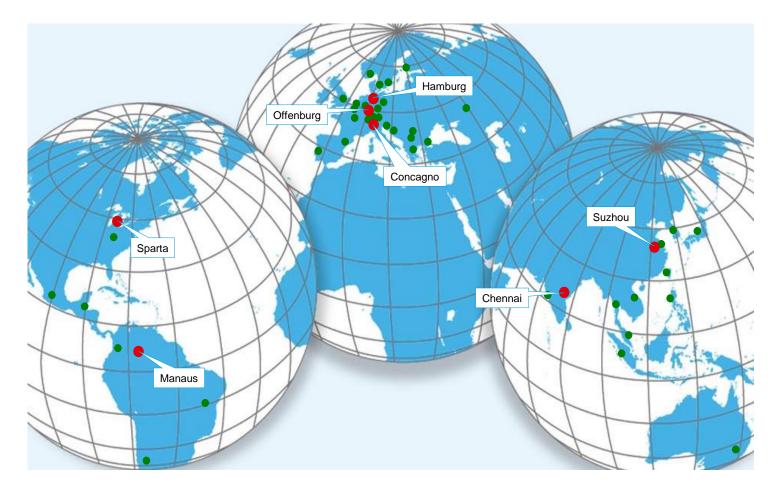
tesa Tapes – General Structure

tesa tapes are multilayer products

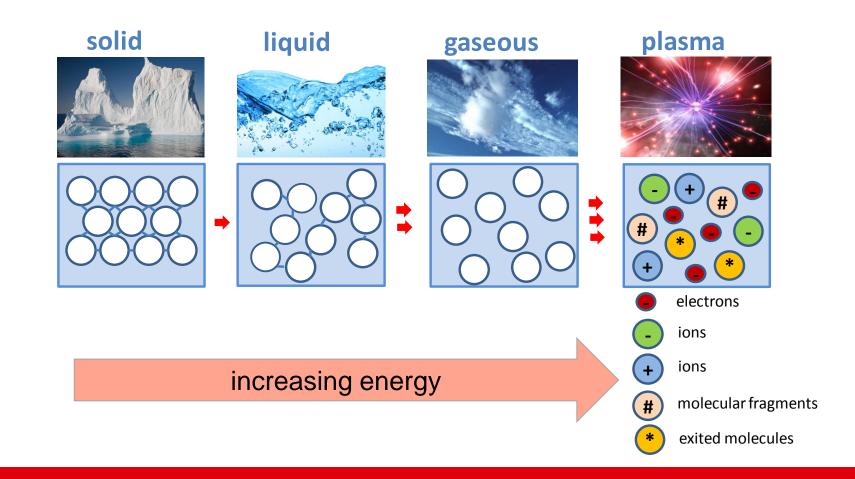
layers have to adhere to each other, therefore in many cases adhesion promotors (primer) necessary



Motivation for use of plasma treatment

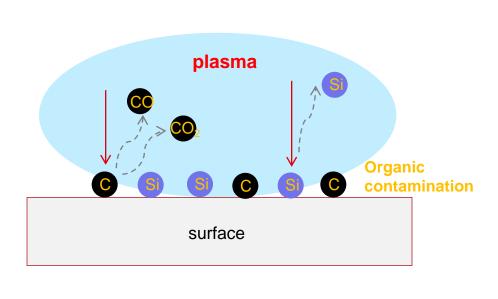

Pre-treatment of web materials for increase of adhesion between layersadvancing from chemical primers towards innovative plasma treatments

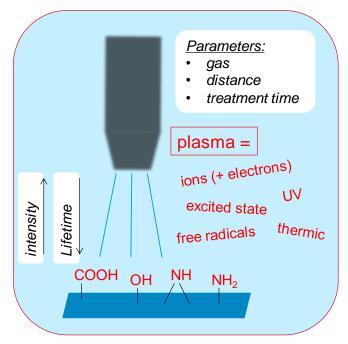
Where to Use Plasma: tesa's Production Sites


World-wide access to advanced plasma technologies necessary

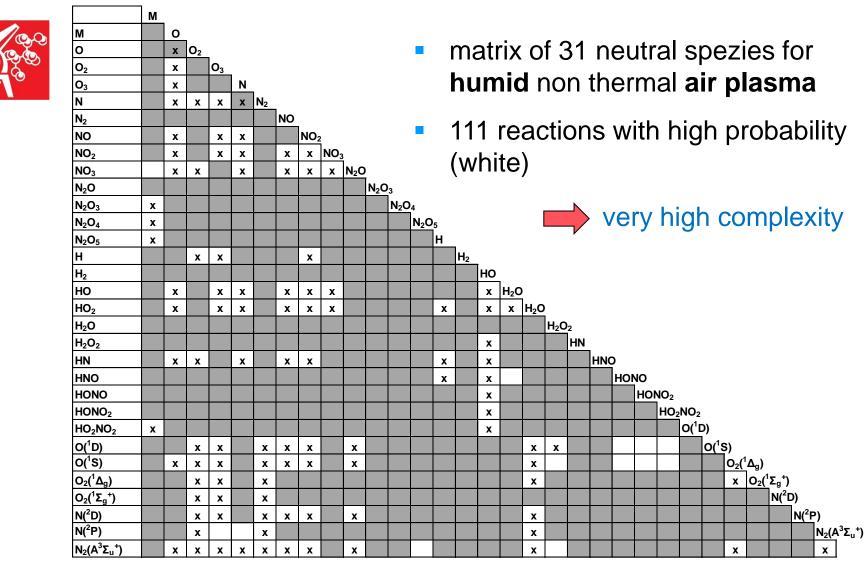
Plasma Fundamentals

Plasma as 4th state of aggregation

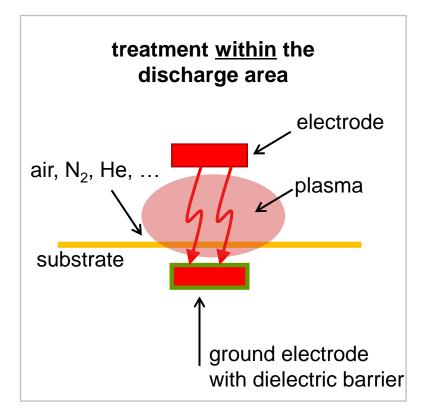


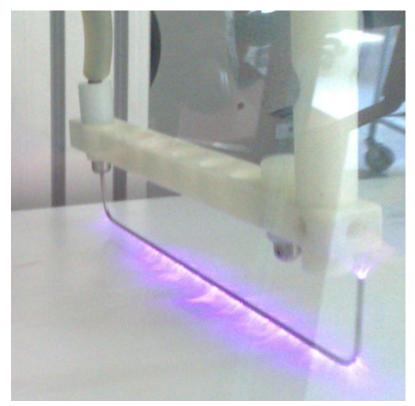

Plasma Effects for Promoting Adhesion

- Two effects dominate:
 - ultra fine surface cleaning


- chemical surface modification
 - polar chemical groups
 - reactive groups
 - acid-base interactions
 - van der Waals forces

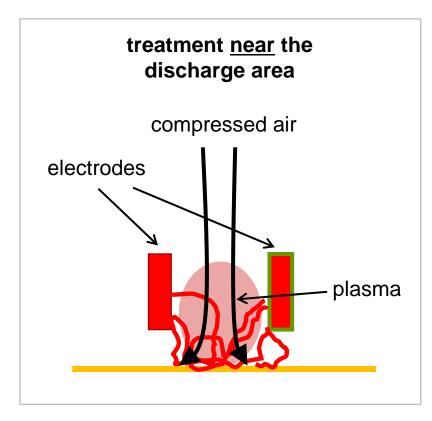
Plasma Chemistry in Gaseous Phase


Herron et al., *Plasma Chemistry and Plasma Processing* **2001**, 21, 3



Technology Overview (1)

- **Direct**" corona treatment (DBD = dielectric barrier discharge)
 - filamentary discharge (e.g. air corona)
 - homogeneous discharge (noble gas corona)

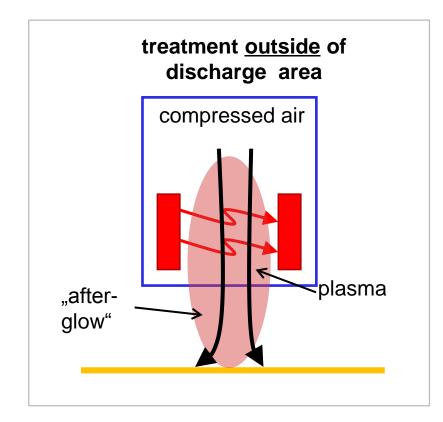


example: wire electrode (Kalwar/Tantec)

Technology Overview (2)

- **"Semi-direct**" corona treatment (DBD = dielectric barrier discharge)
 - filamentary discharge (air corona)
 - homogeneous discharge (noble gas corona)

example: SpotTec handheld corona (Tantec)



Technology Overview (3)

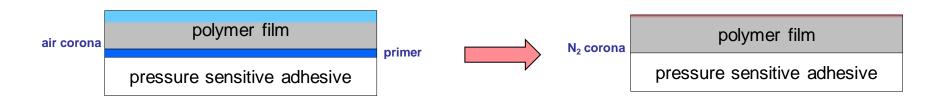
- "Indirect" plasma treatment
 - electric arc discharge

example Plasmajet (Plasmatreat): single nozzle and rotating nozzle

Example: Direct corona within nitrogen atmosphere

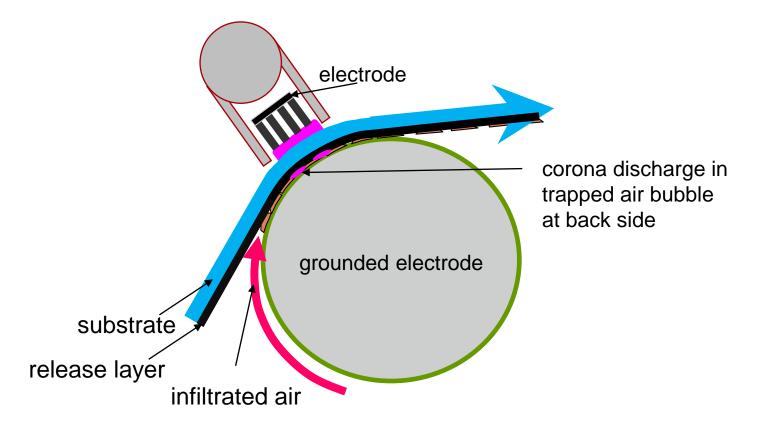
First installed system: Aldyne Plasma System (Softal / Air Liquide)

pure N_2 -atmosphere (< 20 ppm O_2 necessary)


Example: Nitrogen Corona

tesafilm[®]:

Replacement of primer layer by N₂-Corona

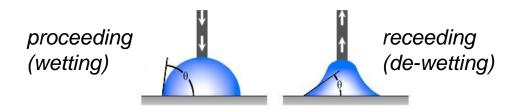


General issue: Back side treatment at Corona

- Unwanted treatment of back side of tape
 - causes problems in unwinding a tape roll due to release layer damage

=> currently not solved properly

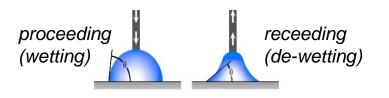
Surface Analysis: Contact Angle Measurements

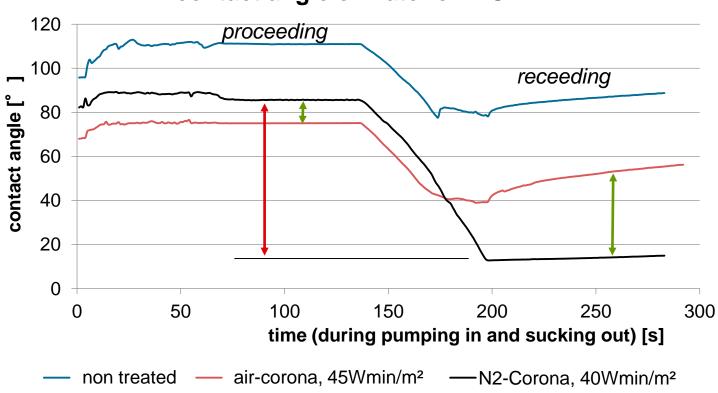


Established method to indicate increase of surface energy with plasma treatment

Observed phenomenon at nitrogen-corona treatment of BOPP:

- measurement by test inks: → 40-60 mN/m
- static contact angle measurement: → 30-40 mN/m


Clarification by dynamic contact angle measurement



Surface Analysis: Contact Angle Measurements

Dynamic measurements

contact angle of water on BOPP

Surface Analysis: Contact Angle Measurements

Conclusion:

- measurements with test inks reflect the receeding dynamic contact angle
- static measurements are more near to the proceeding contact angle
- There is a hysteresis on all technical surfaces! The "equilibrium angel" is a fairy tale, there are lots of stable states

But:

In current trials for N_2 -corona whether the static contact angle, nor the test ink, nor the OWKR surface tension, nor disperse or polar contribution to the surface energy show a correlation to peel adhesion.

Strobel M.: An Essay on Contact Angle Measurements; Plasma Process. Polym. 2010, 7, pp. 8-13 Müller M.: Comments on "An Essay on Contact Angle Measurements"; Plasma Process. Polym. 2011, 8, pp.19-24 Di Mundo, R.: Comments Regarding 'An Essay on Contact Angle Measurements'; Plasma Process. Polym. 2011, 8, pp.14–18 Eral H.: Contact Angle Hysteresis; Colloid and Polymer Science 2013, 291, Issue 2, pp 247-260

Surface Analysis: ESCA (XPS) investigations

Chemical analysis of the treated surface necessary

Comparison between air and nitrogen corona (treated BOPP):

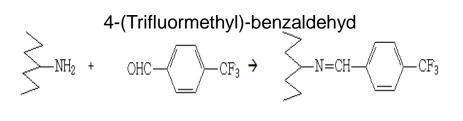
Sample	C [at%]	N [at%]	O [at%]	
without corona	100	-	-	
33 Wmin/m ²	99,3	-	0,7	air
33 Wmin/m ²	95,6	1,9	2,5	nitrogen

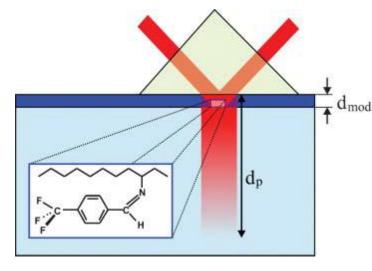
more oxygen content in nitrogen treatment than at air treatment

at air treatment, no nitrogen found on surface

⇒ Very relevant post plasma processes !

 \Rightarrow Remaining question:


What does control adhesion: Nitrogen or oxygen containing groups?



Surface Analysis: Chemical Derivatization

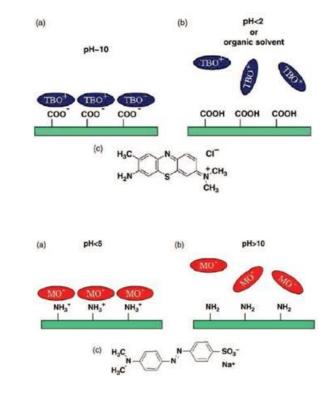
- Derivatization of Amino-groups according to Klages (FhG-IST, Braunschweig)
 - 3 fluorine atoms mark 1 primary amino group

Verification of successful derivatization with:

- ATR FT-IR: no valuable results found
- ESCA: verification successful -> but derivatization not needed

C.-P. Klages, A. Grishin, Plasma Process. Polym. 2008, 5, 359–367 C.-P. Klages, A. Hinze, and Z. Khosravi, Plasma Process. Polym. 10: 948–958, 2013 C.-P. Klages, Z. Khosravi, and A. Hinze, Plasma Process. Polym. 10: 307–312, 2013 IN-SITU FTIR SPECTROSCOPIC STUDIES OF DBD-BASED POLYMER SURFACE NITROGENATION Claus-Peter Klages, Zohreh Khosravi; HAKONE XIV, Zinnowitz, September 21-26, 2014

Surface analysis: Colorimetric investigations

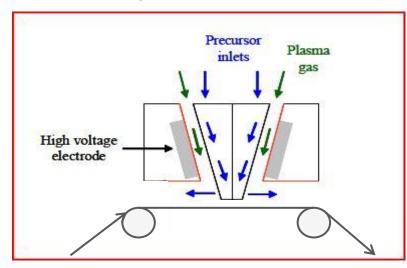

Established for carboxyl- and amino groups

- Works by coupling of selective dyes
 - step 1: colouring of defined area
 - step 2: ph-shift releases dye
 - step 3: quantitative determination of amount of dye by spectroscopy

Conclusion of first trials:

 works in general, handling of method to be optimized

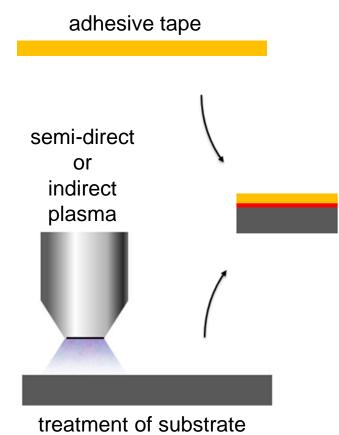
Habeeb A.: ANALYTICAL BIOCHEMISTRY 14, 328-336 (1966) Hartwig A.: Adhäsion 1994-38-7/8-p.94 Hartwig A. et. al.: Adhäsion 2000-44-1/2-p.38 Ma Z.: Colloids and Surfaces B: Biointerfaces 60 (2007) 137–157


Technology extension: Deposition of thin layers by atmospheric plasma

Vito PlasmaLine:

Semi-direct DBD in nitrogen atmosphere with additional precursor inlet

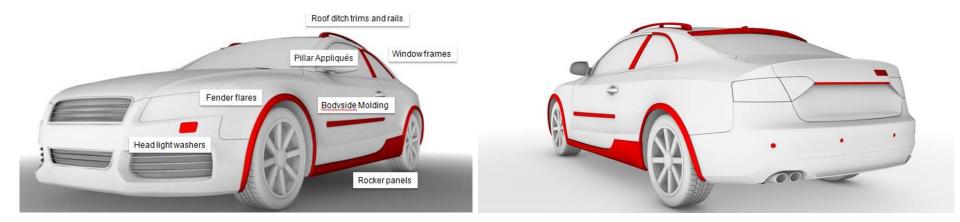
- smooth activation of precursor in after glow
- relative defined use of chemistry possible in comparison to direct corona technologies


Conclusion: Suitable precursors for adhesion promotion available, but very low web speed (< 20 m/min)</p>

Plasma Activation in Customer Tape Applications

Plasma surface treatment of customer substrates is well established

Comparison Plasma vs. Chemical Primer


In high performance tape applications use of chemical primers is common.
Advantages and restrictions of plasma treatment in general are known:

	Plasma-Primer (OpenAirPlasma Plasmatreat)	Chemical Primer (tesa-Primer 60150, 60151, 60152)
Substrates	wide range of materials	wide range of materials, selection of primer needed
Application	automated or semi-automatic treatment easy to implement	manual coating by worker: apply thinly, often wipe of with clean cloth
Tools	plasma equipment, optional positioning table	chemical primer, lint free cloth or brush
Time to bonding	immediate bond handling possible	30 sec to 5 min evaporation time
Open time for bonding	min / several hours	several hours/days
Safety	exhaust of ozone and nitrogene oxides	exhaust of solvent emission, often hazardeous chemical composition

- tesa ACXplus tape range especially suited for such purposes
 - Challenges:
 - bonding on polypropylene substrates
 - Iow surface energy (LSE) lacquers

- Materials:
 - substrate: PP GF 30
 - adhesive tape: tesa ACXplus 7076
- Description of problem:
 - batch fluctuations of adhesive strength, in the worst case peel adhesion < 10 N/cm</p>
 - required level: significant increase, best: cohesive failure of tape
- Analysis:
 - non-polar impurities on PP GF30
 - analyzed substances:
 - Erucamide (slip agent carboxylic acid amide)
 - Irgafos 168, Irganox PS802 (processing stabilizer hydrolytically stable phosphite, heat stabilizer - dialkyl ester of thiodipropionic acid)
 - fatty acids (finger print contamination?)
- ⇒These substances can cause substantial reduction of adhesion

	ÎF
ds tape with reinforcement	
test plate	

Measure: multiple treatments ?

Treatment times	Peel performance [N/cm]		
clean (isop	prop:H ₂ O) part treated		LMWOM = Low molecular weight
1x	12,3		Oxidized material
2x	14,6		·朱.朱.朱.
Зx	16,6	untreated PP GF30	treated PP GF30

- Corona generates surface damage on PP: LMWOMs
 - LMWOM is non-covalently bond to plastic and water soluble
 - LMWOMs affect the warm-humidity durability

- Surface treatment: Semi-direct corona
 - Corona Parameter
 - actual distance 20 25 mm
 - recommended treatment distance (typical): 10 15 mm
 - trials:
 - 12 mm, variable speed
 - 5 m/min, variable distance

speed [m/min]	Peel performance [N/cm]	distance [mm]	Peel performance [N/cm]
only c	lean part treated	only o	clean part treated
2	26,0	6	25,5
5	24,2	12	23,5
10	20,9	20	20,5
		24	15,1

- Breakthrough: Optimization cleaning process
 - w/o cleaning agent: 9,6 N/cm (#04/14)

Cleaning Agent	Peel performance [N/cm]	
4 x wiping, > 1 hours waiting		
	cleaned part treated	
isopropanol : H ₂ O (current agent)	10,8 (#04/14)	
isopropanol	31,5 (#04/14) 36,4 (#06/14)	
petroleum ether	39,6 (#04/14) 51,7 (#06/14) (M)	

C = cohesion failure M= mixture failure

- substantial cleaning necessary
 - improvements with isopropanol and petroleum ether
 - plasma is not able to clean surface

Wrap-up

- Atmospheric plasma technologies offer great chances in improvement of adhesion.
- It needs much efforts to understand plasma induced effects:
 - effects often depend on the given scenario and could not be generalized
 - analytical tools need to be used and interpretated very careful
- Implementation of plasma technologies in high performance industrial applications need investigations on real substrates
 - effects are very sensitive to substrate quality and depend on the used plasma technology
- Regarding tape applications:
 - first choose the right adhesive tape (without pretreatment)
 - don´t forget cleaning
 - then think about pretreatment
 - => support by your tesa representative

Thank you!

tesa SE

Dr. Klaus Keite-Telgenbüscher

9300 Functional Layers BF667

Quickbornstraße 24

D-20253 Hamburg

fon +49 (40) 4909 5171

fax +49 (40) 4909 2369

<u>mailto:klaus.keite-telgenbuescher@tesa.com</u>

http://www.tesa.com